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ABSTRACT
Previous research demonstrated that Evolvable Hardware
(EH) techniques can be employed to suppress Thermoa-
coustic (TA) instability in a computer simulated combus-
tion chamber. Though that work established basic feasibil-
ity, there were still significant questions concerning whether
those techniques would function in the real world. This pa-
per presents the results of the next incremental step between
controlling in pure simulation and controlling a real combus-
tion chamber. In it, we will examine issues involved with
using EH methods to learn to control a hardware analog
circuit model of a combustion chamber. In so doing, we es-
tablish that the basic methods work when interfaced to real
hardware and uncover some interesting, potentially critical,
differences between simulation and real environments. We
will also establish that both the EA methods and the un-
derlying reconfigurable hardware can be expected to learn
effectively in noisy control environments and that they are
well-suited for upcoming use in a live engine.

Categories and Subject Descriptors
B.m [Hardware]: Miscellaneous

General Terms
Algorithms, Design, Experimentation

Keywords
Evolvable Hardware

1. INTRODUCTION
Lean fuel mixtures (low fuel to air concentration) are con-

sidered desirable for fueling turbine jet engines because they
allow for more complete combustion and emission of fewer
pollutants. Unfortunately, the use of lean fuels can give rise
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to Thermoacoustic (TA) instability. TA instability can be
characterized as the exponentially growing pressure oscilla-
tions within the combustion chamber leading to loss in fuel
efficiency, component failure and even flame-outs [8]. Ma-
jor traditional control approaches to TA instability problem
either involve designing a controller through mathematical
stability analysis [9] or using a by using optimization meth-
ods to tune generic feedback controllers and/or adaptive fil-
ters [5]. With the increasing complexity of the controlled
system, these techniques become more difficult to apply.
For instance, to design a mathematical controller, one is
required to possess a large amount of domain knowledge
and possess models of incredible fidelity. This condition be-
comes increasingly difficult to achieve as the system grows
more complex. Tuned feedback systems have also proven
problematic in that they have been observed to introduce
additional resonance modes in the chamber [1].

In our previous work [6], we applied an Evolvable Hard-
ware (EH) control technique for suppressing TA instabil-
ity in a simulated combustion chamber. In those studies,
our evolved controllers outperformed traditional controllers
reported in the literature and were able to do so without
introducing additional resonance modes. Though encourag-
ing, these results still left answered the question of whether
the EH controllers would function in the real world. Because
of the expense and potential danger, it is not desirable to
conduct experiments on a real combustion chamber with-
out a strong evidence that the EH control techniques are
capable of maintaining the pressure at safe levels when TA
instability occurs. However, one may argue that it is im-
possible to know if the EH control techniques are suitable
for such use unless they had been put to test. To help re-
solve this conflict, we moved the system from simulation to
emulation. The EH controller was implemented in a desk-
top computer and interfaced to real plant through digital to
analog converters (DACs) and analog to digital converters
(ADCs). The combustion chamber was emulated by a direct
analog computer built to model TA instability and feedback
phenomena. This allowed us to test live EH hardware in a
more real environment. It also allowed us to uncover po-
tential difficulties before moving to a live flame combustion
system.

In this work, we present one specific set of experiments
in which TA instability is suppressed in an analog circuit
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Figure 1: CTRNN-EH Device : Architecture

operating in real time. Subsequent sections of this paper
will provide complete details on the chamber emulation cir-
cuitry as well as the EAs and reconfigurable control hard-
ware. Because we eventually intend to combine the EA and
the control hardware into a unified VLSI device for online
use, special care was taken to make choices that will mini-
mize the size of the chip without unduly sacrificing learning
or control efficacy. These choices will also be discussed in
detail. The paper will conclude with a discussion of results
and their implications for future work.

2. EH CONTROL DEVICE :
ARCHITECTURE

The EH control device employed in our work consists
of an analog Continuous Time Recurrent Neural Network
(CTRNN) and a digital EA engine used for configuring the
CTRNN. This is illustrated in figure 1.

CTRNN
The CTRNN is a generalization of Hopfield’s Neural Net-
work [10]. When the restrictions of zero self connection
weight and symmetricity are relaxed from Hopfield networks,
they they take the form of CTRNNs. In short, CTRNNs are
Hopfield networks with unconstrained weight matrices [2]. It
has been demonstrated that CTRNNs possess rich dynam-
ical properties and they are capable of approximating any
smooth dynamics when provided with sufficient number of
neurons [4]. The mathematical form of a CTRNN is given
by

τdyi/dt = −yi +

NX
j=1

wjiσ(yi + θi)

where y is the state of each neuron, τ is its time constant,
wji is the strength of the connection from jth neuron to
ith neuron, θ is a bias term and σ(x) = 1/(1 + e−x) is the
standard logistic activation function. The state, weights,
and bias are the parameters of a neuron. The number of
parameters in a CTRNN is determined by the size of the
network, or the number of neurons present. For instance, a
single neuron network has 4 parameters (1 weight, 1 time-
constant, 1 bias and 1 external sensory input weight), and
a five neuron CTRNN has 40 parameters (25 weights, 5 ex-
ternal sensory input weights, 5 time-constants and 5 biases).

EA Engine
The EA engine is an equally important component of the
CTRNN-EH control device. The EA engine is comprised of
an evolutionary algorithm and memory to store necessary in-
formation like best configurations of CTRNNs, fitness scores
and other evolution related details. As mentioned previ-
ously, it is desirable that the EA engine can be implemented
using digital VLSI techniques without consuming significant
area and power. Because the CTRNN is of analog nature,
it can be implemented using analog VLSI techniques within
the constraints of low power and area. The literature shows
some VLSI implementations of CTRNNs [3, 12]. The nature
of the EA makes digital VLSI techniques more appropriate
than the analog ones. However, most digital VLSI EAs are
known for their faster operational speed than for compact
and low power implementations. So, it becomes essential for
one to use a space saving EA to minimize the area consump-
tion while maintaining a good search efficacy. The latter
becomes more important when the environment is noisy. In
this work, we explore one such EA capable of dealing with
noisy environments effectively and which can also be imple-
mented in hardware without consuming too much area and
power. The algorithm will be introduced in the next sub-
section.

Minipop : EA component of the EA engine
Among the different EAs existing in the literature, Minipop
[13] algorithm is chosen for evolving CTRNN controllers.
Minipop algorithm is a hardware feasible EA that derives
its inspiration from the Micro-GA [11] by maintaining a
small population. The small population results in significant
space savings. Figure 2 illustrates the standard Minipop al-
gorithm.

The search mechanism of the minipop algorithm is pro-
pelled by mutation and hypermutation. When each evalua-
tion completes, the best four members of the evaluation form
the population for the next evaluation. There is a hypermu-
tation tournament introduced in each evaluation to navigate
the algorithm towards the best possible solution in the entire
search space. If the fitness landscape has large areas of flat
plateaus and the algorithm gets caught in one such plateu,
mutation may not be sufficient to steer the algorithm out.
This is overcome by the hypermutation tournament.

Initially, population size is fixed at N (we used N=4).
Using a population size of 4 makes a compact hardware im-
plementation possible without losing the algorithm efficacy.
This is demonstrated in a later section. The initial popu-
lation is generated at random (lines 2-5). Fitness scores of
all the members of the population is evaluated and stored.
Later, all the members of the population are mutated indi-
vidually and their fitness scores are evaluated (lines 9-10).
If the mutant’s fitness is better than its parent’s fitness, it
replaces the parent in the population for the next evaluation
(lines 11-14). After this step, a hypermutation tournament
is conducted. A completely random individual is generated
and evaluated against the worst member in the population.
If this hypermutant is better than the worst member in the
current population, it replaces the worst member (lines 16-
23). The best individual of the final four is returned as the
best solution yet seen. The process repeats until the number
of evaluations reaches the maximum value.
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1. Start

max_evaluations = MAX;

population_size = N;

2. for i = 1 to N do

3. Generate RANDOM bitstring for

pop[i];

4. Evaluate Fitness for pop[i] and

store in fitness[i];

5. done

6. while evaluations <= MAX do

7. evaluations := evaluations + 1

8. for i = 1 to N do

9. mutate pop[i] and store in

mut[i];

10. evaluate mut[i] and store in

mfitness[i];

11. if mfitness[i] > fitness[i] then

12. pop[i] = mut[i];

13. fitness[i] = mfitness[i];

14. endif

15. done //for loop ends

16. generate a completely RANDOM

bitstring hyper_mutant;

17. evaluate the fitness of hyper_mutant

and store in f_hypermutant;

18. Determine the worst member of

population and store in worst_member;

19. Evaluate the score of worst_member

and store in f_worst_member;

20. if f_hypermutant > f_worst_member

21. pop[index_worst] =

hyper_mutant;

22. fitness[index_worst] =

f_hyper_mutant;

23. endif

24. Determine the best member of

the population;

25. return pop[best_member_index]

24. done //while loop ends

Figure 2: The Minipop algorithm

3. TA INSTABILITY
TA instability can be understood as the phenomenon of

exponential pressure growth inside a combustion chamber
due to the positive coupling between pressure and heat re-
lease rate. Figure 3 is an analog circuit exhibiting TA insta-
bility. This has been obtained from [7].

Figure 4 shows the time response of this analog circuit
when simulated using MATLAB. The x-axis has units of
time-steps and the y-axis has units of volts. In the real com-
bustion chamber, these voltage values correspond to pres-
sure values in Pascal. Each time-step on the x-axis cor-
responds to 0.5 milliseconds in real time. As it can be
seen from the figure, the pressure (voltage) exponentially
increases within a very short duration of time. Here, the
pressure (voltage) has been clipped after a certain amplitude
(0.6 V). This has been done to ensure that the circuit compo-
nents are kept within safe operational voltage levels. Diodes
D1 and D2 in figure 3 help one achieve this. The MATLAB
simulation has been presented to indicate the ideal circuit
behavior. The same circuit, when operating in real time, has

Figure 3: Analog Circuit Exhibiting TA Instability

noisy output as indicated by the live data recording shown
in figure 5.
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Figure 4: Ideal circuit behavior simulated from Mat-
lab

Figure 6 shows the combined responses of the ideal and
the real cases. We can observe from the figure that, there is
a 66% increase in the observed amplitude of the oscillations,
due to noise. This is a significant change and indicates a
high amount to noise. Hence, in addition to controlling the
TA instability, it also becomes essential to deal with the
noise present in the system.

4. EXPERIMENTAL SETUP
One popular approach for controlling TA instability in

real world is to mount a loudspeaker on the combustion
chamber [14] and play sounds on the speaker so that the
oscillations inside the chamber are dampened. Normally, a
filter or a phase shifter is connected in feedback to the loud-
speaker integrated combustion chamber. The parameters
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Figure 5: Real circuit behavior recorded from live
data

of this feedback element are tuned. The feedback element
drives a Voltage Controlled Oscillator (VCO) whose output
drives the loudspeaker. In our previous work [6], we replaced
the traditional feedback element with a CTRNN control de-
vice. The rest of the setup remained same. Two neurons
of a 5 neuron CTRNN output the amplitude and frequency
values for the loudspeaker through the VCO. Figure 9 shows
this setup.

In this work, we followed this basic setup and replaced
the computer simulated combustion chamber with its ana-
log equivalent model. The VCO was also implemented in
analog components. The VCO circuit was designed using
SN74L629 IC. Figure 7 illustrates the design. The pins of
interest and their connections have been shown in the fig-
ure. The output frequency range for the VCO was between
20 and 280 Hz. A voltage follower was connected at the out-
put of the VCO to avoid loading effects. After this stage, the
gain and switching circuitry stages were implemented. The
VCO output positive voltage values. Because the voltage to
be suppressed from the TA instability circuit swung across
both positive and negative stages, we biased the VCO out-
put with a simple bias circuit and amplified the output after
the bias stage with a variable gain amplifier. The complete
bias and amplification circuitry constituted our gain circuit.
This amplitude adjustment circuit is shown in the figure 8.

The next stage was the switching circuit implemented
with a SPST switch CD4016BCN. This circuit was imple-
mented to switch the engine between stable and unstable
configurations. Testing the analog engine model in both sta-
ble and unstable modes is very essential for deciding upon
the quality of the controllers. It is equally important for a
controller keep a stable engine stable as much as it is for
suppressing the instability in an unstable engine. Hence, we
considered both stable and unstable conditions of the engine
when evolving controllers. This will be discussed in detail
in the next section.
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Figure 6: Indication of amount of noise present in
the system

Figure 7: VCO implementation

The EA engine (minipop) was running on a dedicated
workstation. The CTRNN controllers were also evolved on
this workstation. The CTRNN received inputs from the
analog engine model through a National Instruments Data
Acquisition Card (DAC) SCB-68, connected to this work-
station. The neuron outputs for setting the amplitude and
frequency of the control signal are routed to the VCO via
the DAC. The complete experimental setup is illustrated in
figure 9.

4.1 CTRNN : Experimental Details
In this work, we used an eight neuron CTRNN for con-

trolling TA instability in the analog engine model. In the
referred work by Gallagher and Vigraham [6], a five neu-
ron CTRNN had been used for suppressing TA instability
in a simulated combustion chamber. Our early experiments
suggested that a 5 neuron CTRNN was not sufficient for
suppressing TA instability in this analog circuit. While the
model employed in [6] seems to have more complexity as
indicated by the state equations on which the combustion
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Figure 8: Amplitude Adjustment Circuit
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chamber was simulated, a five neuron CTRNN was sufficient
to suppress TA instability. In this work, we observed that a
five neuron CTRNN was not sufficient to control TA insta-
bility on real analog hardware. This suggests that the real
world problems have more degree of complexity which may
not be straightforward to the naked eye. The noise factor
discussed in the previous section may be a factor attributing
to the increased complexity of this problem. There may be
other factors which, at this time, is under investigation.

Each neuron has the parameters described in section 2.
In total a 8 neuron CTRNN has 88 parameters. Each pa-
rameter is encoded into 8 bits. This determines the genome
size of the EA.

4.2 Details about the EA engine : minipop

Weighted Resampling for handling noisy environments
In [13], it was suggested that minipop algorithm worked
better in noisy environments when weighted resampling was
performed. Resampling is an operation by which a can-
didate solution is periodically re-evaluated. Such periodic
re-evaluation prevents a solution from holding a mislead-
ing score . Weighted resampling modifies the resampling
operation such that the fitness assigned to an individual is
a function of its previous fitness and its resampled fitness.
Let Fold is the fitness of the individual and Fnew is the new
fitness value returned when the individual is reevaluated.
Assign W as the resampling weight operator. The value of
W ranges from 0.0 to 1.0. Then the calculation of resampled
fitness can be given by the following equation.

Fresampled = (1−W ) ∗ Fold + W ∗ Fnew

The modifications to the minipop algorithm after weighted
resampling has been incorporated, can be found from [13].
In this work, we used a value of 0.3 for W.

Parameters of Minipop
For this work, we used a minipop of a population size 4.
The genome length was set to 704 to encode all the 88 pa-
rameters of the CTRNN. The bitwise mutation rate used
was 0.01. The seed for the random number generator was
the system clock and the maximum evaluations were set to
be 10,000. The run time for one experiment to finish was
about 720 minutes. We evolved a total of 25 controllers.
It took 13 days to finish evolving all the controllers. The
time taken to evolve the controllers can be attributed to the
way the fitness of a controller is evaluated. One might argue
that if the eventual goal is to suppress TA instability in a
real combustion chamber, the time to find a controller is not
acceptable. We address this issue in the analysis section of
this paper. Till the analysis has been presented, it might be
taken with confidence that the time to find a best controller
is not a bottleneck as it appears to be.

Fitness Function
For this work, the fitness function for the EA was the area
under the curve of the voltage time response curve. When-
ever the fitness computation of a genome was requested by
the EA, the analog engine was initialized to a known un-
stable state. The CTRNN controller connected in feedback
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with the engine was configured to the values represented by
the genome. The engine was operated with this setup and
the output response was recorded. After 1 sec, the switch
in the circuit was flipped to make the engine go to a sta-
ble state without disturbing the CTRNN controller. The
output response was recorded for 1 sec. The fitness score
returned to the EA was the complete area under the curve
of the output response of the analog engine for the duration
of this 2 seconds. The EA’s optimization goal is to find a
controller that has the minimum area under the curve. Ad-
ditionally, if a controller succeeds in making an uncontrolled
engine stable but introduces instability in an already stable
engine, it is penalized and has a poor fitness score. The
advantages of having such a fitness function are :

1. There is a higher chance that controllers evolved are
robust i.e., they can recognize the change in the con-
trolled environment and react to it accordingly.

2. If the engine does not encounter TA instability, then
it can be assured that the controller will not introduce
new instabilities into the engine

5. RESULTS AND ANALYSIS

5.1 Results of the experiments
In total, we evolved 25 controllers using minipop as the

EA engine of the CTRNN-EH device. We found that all the
25 controllers were successful in suppressing TA instability
in the analog engine circuit, giving a yield of 100 percent.
The table 1 summarizes all the interested metrics and their
associated values.

Metric Result
No. of controllers
evolved

25

No. of working con-
trollers

25

Evaluations taken to
find the first best so-
lution

1325

Final fitness score 7123
Final standard devia-
tion

2030

Table 1: Summary of results : minipop

Of particular interest are the last three metrics listed in
the table. Before analyzing these statistics, we will define
what an acceptable controller is.

Acceptable Controller
A controller is termed acceptable if it succeeds in suppress-
ing TA instability. We can observe from the figure 4 that
the amplitude of the output voltage exponentially grew to a
maximum level at which it was held constant for its entire
operational time. The maximum voltage at which the circuit
oscillated was observed to be 2V. A controller is acceptable
when it :

1. It prevents the exponential growth of oscillations.

2. It keeps the oscillations to a minimum.

Because of the nature of the analog engine system, it is im-
possible to keep the oscillations to zero. Figure 6 contains a
matlab simulation demonstrating this statement. Here, the
switch in the circuit 3 was opened to remove the positive
feedback causing TA instability. In the real world, this is
analogous to ”somehow” remove the vicious feedback effect
caused by the flame dynamics of the chamber. This can
only be achieved by removing the flame altogether from the
combustion chamber and hence, this method of oscillation
elimination is impossible to achieve. However, it provides
an excellent benchmark to test the controllers evolved. The
amplitude of the minimum oscillations were observed 0.18
V. Because this was an ideal case scenario, the stable am-
plitude of the system was relaxed to 0.25 V. The area under
the curve when the engine was constantly oscillating at this
voltage, was calculated to be 8300 units. Any controller hav-
ing an area under the curve of 8300 or less was categorized
to be an acceptable controller. While one might argue that
having an error score as the criteria for choosing a controller
is misleading, it augurs well to recollect the constraints en-
forced on the fitness calculations from the previous section.
Because, the controllers were penalized whenever their am-
plitude increased over the simulation time, there is a lesser
probability of a controller being incorrectly judged. Addi-
tionally, all the 25 controllers were tested for erroneous be-
havior and none of them responded positively for this test.

Time taken to find the first good solution
This metric is very important for online intrinsic evaluations.
When evolving controllers online, it is essential to find so-
lutions faster. For this problem, as mentioned previously, a
solution should have had an error score of 8300 or less to be
classified as good. In our experiments, we found that, the
minipop took on average of 1325 evaluations to find the so-
lution. For the time being, we will consider this result in the
literal sense without getting into the details of considering
the time taken to perform one evaluation. In the later parts
of the section, we will analyze this in detail.

Final fitness score
The average of the optimum fitness scores of all the 25 con-
trollers was computed to be 7123. This suggested that the
controllers performed better than the threshold set by us.
The fig 10 indicates the trend of the average fitness curve
against the number of evaluations. We can see from this
curve that the threshold for acceptability is reached quickly
and then a local search for a better controller configuration
is being performed.

The fig 11 shows the response of the engine while being
controlled by the best CTRNN controller. The x-axis is in
time-step units instead of real time. The complete simula-
tion window consists of 20,000 time-steps and is equivalent
to 2 seconds in real time. The first 10,000 steps or 1 sec is
the behavior of the unstable engine under the influence of
the CTRNN controller. The second 10,000 steps indicates
the period of 1 sec after the switch is flipped to configure
the engine circuit to a inherently stable configuration. As
seen from the figure, the controller managed to prevent ex-
ponential growth of the oscillations and also managed to
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Figure 10: Average Fitness Trace

effectively keep the amplitude close to the ideal value. All
the controllers exhibited this characteristic behavior.

Figure 11: Engine response with CTRNN controller
in action

Spread of the solution quality
The third metric of interest from the table 1 is the aver-
age standard deviation. It provides information about the
clustering of the solutions at an evaluation. It is essential
that the solutions are tightly clustered to determine with
confidence that the the EA evolves solutions of similar qual-
ity every-time. While the standard deviation of the fitness
seems to indicate a higher and not-so-attractive value, it is
not really the case. It has to be remembered that the fitness
score is computed by the area under the curve for the com-
plete simulation time of 2 seconds (or 20,000 steps). If the

Figure 12: Spread of quality of evolved solutions

amplitude of oscillations observed using a controller, say 1,
is 0.1V larger than that obtained by using a controller 2, it
significantly changes the area under the curve. Hence, the
value 2030 for average standard deviation is not large, as it
appears to be. The figure 12 shows the spread of solutions
along the fitness curve. It can be observed that the solu-
tions become tightly clustered with the increasing number
of evaluations.

5.2 Analysis of the observed results
In this section of the paper, we present our detailed in-

terpretation of the results observed. The time taken to find
a first acceptable controller is very significant for intrinsic
EH applications. Intrinsic EH, where the evolution is made
online (in real time), requires the EA to evolve solutions
quickly. We found that, it takes 1325 evaluations on aver-
age to find the first good solution. Each evaluation takes
a minimum of 2 seconds to gather the information required
to compute the fitness score. Even if other computational
delays are completely ignored, the time taken to perform a
fitness evaluation cannot be ignored. Given that the oscil-
lations inside the combustion chamber can get to dangerous
levels in the order of milliseconds, one can argue about the
benefits gained by such an approach. However, it must be
noted that, the bottleneck is just the fitness function and not
the control approach. For intrinsic applications, the current
fitness function must be changed. Two possible ways of im-
plementing a new fitness function are :

1. Reduce the simulation window size. If the engine goes
unstable in the order of milliseconds, the simulation
window can be shrunk to monitor the engine behavior
for certain millisecond duration rather than a complete
second. In the experiments, because we do not have
these constraints and also because these experiments
were done for checking the feasibility of EH techniques
for real time control applications, we did not feel the
necessity to make this change.

2. Instead of calculating the area under the curve, the raw
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pressure value can be used as the fitness score directly.
This requires a controller with a fast response time.
CTRNNs have been previously demonstrated to have
a fast response time [6].

Other approaches may also exist in addition to the ones de-
scribed above.

The controlled environment was very noisy. There were
power supply and ground rail noises in addition to other
environmental noises in the controlled environment. How-
ever, minipop algorithm evolved solutions of good quality
despite the noise in the environment. We did not evolve
controllers using the standard minipop and are hence, not
in a position to predict the quality of solutions if weighted
resampling was removed. But, from the results published in
[13], it appears that there will be a significant difference in
the quality of evolved solutions when weighted resampling
is removed from the algorithm. Also, all the 25 controllers
evolved were qualitatively very similar. This indicates the
consistency of the algorithm to find good quality solutions.

6. CONCLUSIONS AND FUTURE WORK
In a previous research, we had demonstrated that EH

techniques are better than traditional control techniques for
suppressing TA instability in real time [6]. It was shown
with evidence that controllers evolved using EH techniques
were robust and superior in quality than the traditional con-
trollers [8, 9] for a simulated combustion chamber. At that
time, questions were raised over the feasibility of these tech-
niques when experiments were conducted on real time in-
stead of simulation. It was speculated that the EH control
technique would be effective in real time as well. However,
there were no experimental evidences at that time to sup-
port that speculation. In this work, we achieved the follow-
ing goals :

1. It was demonstrated that the EH control technique is
feasible for real time applications.

2. Controllers were evolved for TA instability on a real
hardware. The controllers were successful in prevent-
ing TA instability and kept the oscillations to a mini-
mum level.

3. A hardware feasible algorithm minipop was introduced
and was used as the EA engine to evolve the CTRNN
controllers. The minipop algorithm evolved very good
controllers despite the noise in the environment.

At this time, we have sufficient results to support our plans
for taking EH control of TA Instability to a next stage. A
VLSI CTRNN-EH device is going to be built with minipop
as the EA engine. This chip is intended to be made generic
and hence, will have additional uses apart from suppressing
TA instability in real turbine jet engines.
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